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Abstract

An elastic cytoskeletal tensegrity structure composed by six inextensible elastic struts and 24 elastic cables is consi-
dered. The model is studied, adopting delay convention for stability. Critical conditions for simple and compound insta-
bilities are defined. Post-critical behavior is also described. Equilibrium states with buckling of the struts are also
considered. It is revealed that critical Euler buckling load of the struts is a necessary but not a sufficient condition
for the existence of bifurcated equilibrium states, caused by buckling of the struts.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Following the pattern of Snelson�s sculptures in 1948, Buckminster Fuller (1961) adopted the concept of
tensegrity as a new method of designing geodesic structures. Those structures are made up by struts, pre-
serving the structural integrity by cables in tension. According to Connelly and Back (1998), the tension-
integrity, or tensegrity, structures can be mathematically modeled as a configuration of points, or vertices,
satisfying simple distance constraints. Ingber (1993, 1998), using tensegrity structures for modeling the cell
deformability, proposed a microstructural approach to cytoskeletal mechanics based on tensegrity. In fact
tensegrity structures are ‘‘strut-cable’’ structures with prescribed symmetries. There exists an extensive lit-
erature concerning the mechanics and also the advanced mathematics involved in these structures. A con-
cise description of the topic, trying to put together the mathematics and the mechanics of tensegrity as well,
has been given by Williams (2003) with up-dated references. Linear dynamic analysis results has been re-
ported by Motro (1992). Nonlinear dynamics and control studies have been published by Sultan et al.
(2001). In addition Coughlin and Stamenovic (1997) presented a study of a six strut tensegrity structure
0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.11.008

* Tel.: +30 2294075816; fax: +30 2107721682.
E-mail address: kolazop@central.ntua.gr

mailto:kolazop@central.ntua.gr


3460 K.A. Lazopoulos / International Journal of Solids and Structures 42 (2005) 3459–3469
with buckling compression elements, applied to cell mechanics. Yet Stamenovic and Coughlin (1999) deal
with the role of prestress and the architecture of the cytoskeleton presenting also some specific values of
various elastic moduli. Since those structures are strong and light they have been quite important in the
construction of huge structures, like domes, high structures such as antennas and deployable structures
as well, used in space.

The simplest three dimensional tensegrity structure, classified as T-3 by Kenner (1976), has been stud-
ied by Oppenheim and Williams (1997, 2002, 2001). Following a bifurcation method, working with gen-
eralized coordinates, Lazopoulos (submitted for publication) studied the stability of the model. Further,
Coughlin and Stamenovic (1997) studied the stability of the six-strut model, for microstructural cytoskele-
tal studies, Ingber (1993, 1998). Nevertheless, the last stability studies are restricted to the buckling of
the struts.

In the present work, the stability of a six-strut tensegrity model is discussed with elastic inextensible
struts. Euler-strut buckling is also considered. In fact the stress–strain laws of the cables are non-linear
and non-unique equilibrium solutions show up. Critical states are defined and post-critical equilibrium
paths are described adopting delay convention for stability, Gilmore (1981, p. 143) . The local (delay)
convention for stability is invoked for buckling phenomena, whereas the global (Maxwell�s) convention
is mainly recalled for coexistence of phases phenomena such as elastoplastic ones, twinning of crystals,
smart materials etc, Ericksen (1991), Pitteri and Zanzotto (2003). Simple and compound bifurcation of
the equilibrium paths are revealed. Since the present bifurcation is a multivariable problem, standard
methods require elimination of passive coordinates and normalization of the potential energy function
(Thompson and Hunt, 1973; Troger and Steindl, 1991). Nevertheless, using a free coordinate bifurca-
tion procedure (Lazopoulos, 1994), simple and compound bifurcation problems may be studied and the
corresponding singularities may be classified. Some applications will be worked out just for implemen-
tation of the theory. Furthermore, critical states and post-critical equilibrium paths are considered
caused by Euler�s buckling of the struts. It is revealed that the critical Euler buckling load of the struts
is a necessary condition for the critical states, however it does not always yield stable post-critical
states.
2. Description of the six-strut tensegrity model

As it has been mentioned earlier, stability of the six-strut tensegrity model has been studied by
Coughlin and Stamenovic (1997). Euler-strut buckling has already been discussed. The model shown in
Fig. 1 consists of six inextensible struts and 24 cable segments. The cables and the struts are connected
through joints. The origin O of the coordinate system OXYZ is placed at the center of the model with
the axes in the direction of the pairs of the struts. All the struts have the same initial length L0. Never-
theless, the struts may buckle and their chords may change and become LI, LII, LIII correspondingly for
the struts (AA or A 0A 0), (BB or B 0B 0), (CC or C 0C 0). Furthermore, the initial (without external loading)
length of the cables is equal to l0 ¼

ffiffiffiffiffiffiffiffi
3=8

p
L0. The value of the length l0 is required for the equilibrium

conditions of the structure without external loads. Forces of magnitude Tx/2 are applied at the end points
of the struts AA and A 0A 0, see Fig. 1, while forces of magnitude Ty/2 are applied at the ends of the struts
BB and B 0B 0. Yet forces of magnitude Tz/2 are applied at the ends of the struts CC and C 0C 0. This causes
the change of the distances between the struts. In fact the distance between the AA and A 0A 0 struts
changes from s0 ¼ L0

2
to sx. The same holds for the distance sy between the BB and B 0B 0 struts and sz be-

tween the CC and C 0C 0 struts. Furthermore, the cable segments change from l0 to l1 for the segments AB,
A 0B, AB 0, A 0B 0, and from l0 to l2 for the segments AC, A 0C, AC 0, A 0C 0. Likewise the cable segments BC,
B 0C, BC 0, B 0C 0 change from l0 to l3. Hence the expressions for the current cable segments l1, l2, l3 are
given by, see Coughlin and Stamenovic (1997),



Fig. 1. The geometry of the six-strut tensegrity model.
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l1 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLII � sxÞ2 þ s2y þ L2

I

q
;

l2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLI � szÞ2 þ s2x þ L2

III

q
;

l3 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLIII � syÞ2 þ s2z þ L2

II

q
;

ð1Þ
with the current chord lengths LI, LII, LIII. The analysis concerning buckling of the struts will be worked
out in the section following the stability study of the tensegrity model with inextensible struts.

Let us consider a non-linear strain energy function for the cables,
W i ¼
a
2

li
ln

� 1

� �2

þ b
6

li
ln

� 1

� �3

þ c
24

li
ln

� 1

� �4

; ð2Þ
with i = 1,2,3 and ln the initial natural lengths of the cable. Then the total potential energy function with
rigid struts is given by
V ¼ 8ðW 1 þ W 2 þ W 3Þ � T xsx � T ysy � T zsz: ð3Þ

Hence, the total potential energy function depends on the variables sx, sy, sz and the loading parameters

Tx, Ty, Tz. Thus the equilibrium equations are given by
V1 ¼ rV ¼ oV
osx

;
oV
osy

;
oV
osz

� �
¼ 0: ð4Þ
It is rational to expect a solution from the equilibrium equations. If that solution is unique the equilib-
rium placement is stable, whereas in the case the solution is not unique the placement is unstable. With non-
unique solutions we mean multiple solutions (bifurcation case) or no solution at all (dynamic buckling).
3. Bifurcation analysis

Adopting delay convention for stability, Gilmore (1981, p. 143), the system remains in a stable or meta-
stable equilibrium place until that state disappears. Delay convention is used for studying mainly structural
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systems (Thompson and Hunt, 1973; Troger and Steindl, 1991). Nevertheless, Maxwell�s convention de-
mands for the system to follow the places of the global minima of the total potential, Gilmore (1981,
p.143). Maxwell�s convention for stability is used for studying material instabilities such as coexistence
of phases phenomena, twinning of crystals etc. (Ericksen, 1991; Pitteri and Zanzotto, 2003). The analysis
that follows conforms with the delay convention for stability.

Let us consider the generalized vector,
v ¼ ðsx; sy ; szÞ ð5Þ

defining the placement of the system and the loading vector K of the loading parameters,
K ¼ ðT x; T y ; T zÞ; ð6Þ

then the total potential energy function V may be expressed by
V ¼ V ðv;KÞ: ð7Þ

If a position (v0,K0) is an equilibrium placement, the equilibrium path in the neighborhood,
v ¼ v0 þ dv; K ¼ K0 þ dK ð8Þ

satisfies Taylor�s expansion of the equilibrium equation,
V1ðv;KÞ ¼ V0
1 þ V0

2dvþ
V0

3

2!
dv2 þ V0

4

3!
dv3 þ _V

0

1dK þ oðjdvj3 þ jdKjÞ ¼ 0 ð9Þ
with V1 = $V, V2 = $$V, V3 = $$$V and _V ¼ oV
oK and the upper-script indicating evaluation at the place-

ment (v0,K0). The symbol o(jdvj3 + jdKj) means truncation of the higher order terms than the ones included
in the parenthesis. Since the terms included in Eq. (9) should be of the same order of magnitude, the higher
order terms are important in specific cases. Recalling that (v0,K0) is an equilibrium placement, V0

1 ¼ 0 and
Eq. (9) yields,
V0
2 dvþ _V

0

1 dK ¼ 0: ð10Þ

Hence, if
V0
2 ¼

o2V 0

os2x

o2V 0

osxosy

o2V 0

osxosz

o2V 0

osyosx

o2V 0

os2y

o2V 0

osyosz

o2V 0

oszosx

o2V 0

oszosy

o2V 0

os2z

2
666666664

3
777777775

ð11Þ
is not a singular matrix, the equilibrium Eq. (10) accepts a unique solution,
dv ¼ � V0
2

� 
�1 _V1dK: ð12Þ
In the case V0
2 is a singular matrix yielding,
detV0
2 ¼ 0 ð13Þ
the critical conditions K0 ¼ ðT 0
x ; T

0
y ; T

0
z Þ have been reached, corresponding to the critical placement. In that

case a single vector direction dt for the simple bifurcation case, or two vector directions dt for the com-
pound bifurcation case, satisfies the equation,
V0
2dt ¼ 0: ð14Þ
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4. Simple bifurcation case

The incremental vector is defined, in this case, by
2
64
dv ¼ fdt; ð15Þ

where f is a parameter. Hence, the equilibrium Eq. (10) yields,
f2 ¼ � 2 _V1dKdt

V3ðdtÞ3
ð16Þ
if V3(dt)
3 5 0. This case corresponds to fold catastrophe. In case f2 > 0 two equilibrium placements are

possible. In case f2 < 0 no equilibrium placement is possible and motion is expected. In the case
V3(dt)

3 = 0 the equilibrium Eq. (12) yields,
f3 ¼ � 6f _V2dt
2dK

V4dt
4 þ 3V3dt

2b
ð17Þ
corresponding to the cusp singularity with b a vector defined by the relation,
V3ðdtÞ2 þ V2b ¼ 0;
see Lazopoulos and Markatis (1995).
5. Compound bifurcation of the six-strut tensegrity model

In the present case, the singular matrix V0
2 includes entries of the same value equal to #. Therefore, the

kernel a2 of the singular matrix V0
2 satisfying the equation,
V0
2a2 ¼ 0 ð18Þ
with the kernel a2 may be described by
a2 ¼ u1 u2½ 
 ¼
1 0

�1 1

0 �1

2
64

3
75: ð19Þ
Standard bifurcation methods require elimination of passive coordinates and normalization of the total
potential energy function. However, Lazopoulos (1994) and Lazopoulos and Markatis (1995) have pre-
sented a free coordinate branching approach with classification of the various singularities. Following that
procedure, the tangent to the bifurcating equilibrium branch is described by a vector a1 in R2 with
a1 ¼ d1 d2½ 
, and
dsx
dsy
dsz

3
75 ¼ fa2a1 ¼ f d1u1 d2u2½ 
: ð20Þ
Further, the vector a1eR
2 is defined by the existence of a vector c ¼ c1 c2½ 
 satisfying the equations,
V0
3ða2a1Þ

2ða2cÞ ¼ 0;

_V
0

2ða2a1Þða2cÞdK ¼ 0:
ð21Þ
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Eliminating cbetween the Eq. (21) a vector a1 is defined, describing the tangent vectors to the equilibrium
paths. Three different solutions (vectors a1) of the system (21) classify the singularity as elliptic umbilic,
whereas the unique solution classifies the singularity as hyperbolic and the two different vectors a1 classify
the singularity as parabolic umbilic. Yet the parameter f may be found by the equilibrium Eq. (16), see
Lazopoulos and Markatis (1995).
6. Applications

Two applications will be studied in the present section. The first application deals with the simple
branching of the equilibrium of the six-strut tensegrity model with forces acting along one direction.
The second application deals with the compound branching.

6.1. Simple bifurcation application

Let us consider the cytoskeletal tensegrity model with the strut length L0 = 4.97. The applied force is
directed only along the x-axis. Furthermore, the strain energy function is defined by,
W i ¼
1

2

li
ln

� 1

� �2

� 5:56

6

li
ln

� 1

� �3

þ 4:12

24

li
ln

� 1

� �4

: ð22Þ
Therefore, equilibrium Eq. (4) yields,
oW 1

osx
þ oW 2

osx
þ oW 3

osx
� T x

8
¼ 0;

oW 1

osy
þ oW 2

osy
þ oW 3

osy
¼ 0;

oW 1

osz
þ oW 2

osz
þ oW 3

osz
¼ 0:

ð23Þ
The system of equilibrium equations consists of two equations due to the symmetry in the y and z direc-
tions. Likewise, the critical condition is defined by,
detV0
2 ¼ 0: ð24Þ
A critical placement (sx, sy, sz) satisfying both Eqs. (23) and (24) may be found using the Mathematica
computerized algebra pack. Indeed, if
H ¼ oW 1

osy
þ oW 2

osy
þ oW 3

osy

� �2

þ oW 1

osz
þ oW 2

osz
þ oW 3

osz

� �2

þ ðdetV2
0Þ

2 ð25Þ
a solution to the system (23) and (24) may be located looking for the minimum of the function H to be
equal to zero. Indeed, with the natural (initial) length ln = 2.72 a critical state may be located with
sx = 5.0, sy = 5.76, sz = 5.79. That critical placement is reached with Tx = 0.0687. The Hessian matrix at
the critical placement, see Eq. (11), has been computed and found equal to,
V0
2 ¼

�0:060 �0:0006 �0:012

�0:0006 �0:141 �0:012

�0:012 �0:012 �0:133

2
64

3
75: ð26Þ
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The vector dt ¼ dt1 dt2 dt3½ 
T satisfying Eq. (14), i.e. V0
2dt ¼ 0, may be given by,
2
64
dt ¼ 1 0:42 �4:93½ 
T: ð27Þ
Proceeding to the prescription of the post-critical equilibrium path, Eq. (16) defines the parameter f.
Indeed,
V0
3ðdtÞ

3 ¼ o
3V
os3x

dt31 þ 3
o
3V

osxos2y
dt1dt

2
2 þ 3

o
3V

osxos2z
dt1dt

2
3 þ

o
3V
os3y

dt32 þ 3
o
3V

osyos2x
dt2dt

2
3 þ 3

o
3V

osyos2z
dt2dt

2
3 þ

o
3V
os3z

dt33

þ o3V
os3z

dt33 þ 3
o3V
oszos2x

dt3dt
2
1 þ 3

o3V
oszos2y

dt3dt
2
2 þ 3

o3V
oszosyosz

dt1dt2dt3

¼ 13:23

_V1dtdK ¼ �dT x
Hence, according to Eq. (16),
f2 ¼ � 2 _V1dKdt

V3ðdtÞ3
¼ 0:151dT x: ð28Þ
Consequently, for dTx > 0 the equilibrium placements are,
sx
sy
sz

3
75 ¼

5:0þ f

5:76þ f0:42

5:79� f4:93

2
64

3
75:
6.2. Compound branching application

Let us consider, in the present case, the six-strut tensegrity model with the strut length of the perfect sys-
tem L0 = 5. However initial imperfections may be present at the lengths of the struts and LI = L0 + e,
LII = L0 + 2e, LIII = L0 + 3e. Let us point out that the solution to the problem requires existence of some
imperfections. Those imperfections may also be introduced by the elastic coefficients of the strain energy
function. The applied force system is directed only along the three axes with equal magnitude. In this case
the sx = sy = sz. Furthermore, the strain energy function is defined by,
W i ¼
1

2

li
ln

� 1

� �2

� 2

6

li
ln

� 1

� �3

: ð29Þ
Therefore, equilibrium Eq. (4) yields,
oW 1

osi
þ oW 2

osi
þ oW 3

osi
� T i

8
¼ 0; i ¼ x; y; z: ð30Þ
Further, the Hessian V0
2 is singular with equal entries iff,
o2W 1

os2x
þ o2W 2

os2x
þ o2W 3

os2x
¼ o2W 1

osxosy
þ o2W 2

osxosy
þ o2W 3

osxosy
: ð31Þ
A critical placement of compound bifurcation is defined by a solution of the system (30) and (31) if the
natural (initial) length of the cables is ln = 2.5. Indeed, the system (30) and (31) yields,
sx ¼ sy ¼ sz ¼ 6:616: ð32Þ
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For a tensegrity system with the parameters,
a ¼ 1; b ¼ �2; c ¼ 0; L0 ¼ 5; ln ¼ 2 ð33Þ
the perfect system (e = 0) yields
x0 ¼ y0 ¼ z0 ¼ 6:616; T 0
x ¼ T 0

y ¼ T 0
z ¼ 0:334: ð34Þ
Eq. (21a) yields for c ¼ c1 c2ð Þ, c = c1/c2, d = d1/d2
�0:075d2 þ 0:0716dc � 0:051c2 ¼ 0; ð35Þ
whereas, Eq. (21b) yields, assuming K = (Tx,Ty,Tz,e)
ð�0:7334þ 0:362d þ 0:36c � 0:74cdÞe ¼ 0: ð36Þ

The common real solution of the system (35), (36) is,
d ¼ 1:02; c ¼ �0:92 ð37Þ

and the singularity is hyperbolic umbilic.

Therefore, the post-critical path is described by the field,
sx
sy
sz

2
64

3
75 ¼

6:616þ n

6:616

6:616� n

2
64

3
75: ð38Þ
The post-critical, loading in addition, may be given by,
T x ¼ 0:334þ s1; T y ¼ 0:334þ s2; T z ¼ 0:334þ s3: ð39Þ

The total potential V = V(n,e,s1,s2,s3) may be computed. Then the equilibrium equation is defined by
oV
on

¼ 0 ð40Þ
yielding,
n ¼ s3 � s1
0:15

e�1: ð41Þ
Therefore, Eqs. (38) and (41) yield the post-critical equilibrium path.
7. The strut buckling

In this case, the axial compressive load on the struts AA or A 0A 0 has reached the Euler critical value,
P 0 ¼
p
L

� �2
EI ; ð42Þ
with EI the bending stiffness of the struts AA or A 0A 0 and L0 the initial length of the struts. It is also as-
sumed that the compressive loads PB, PC of the struts BB or B 0B 0 and CC or C 0C 0 respectively are less than
the corresponding Euler critical loads. This is not a restriction, since the compressive loads are different.
The compressive loads in Coughlin and Stamenovic (1997) are equal because no external loading is applied
and the initial equilibrium placement is critical. Here the critical placement shows up after the application
of the load Tx. Due to the buckling of the AA or A 0A 0 struts, the deflection of the strut is defined by,
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wðsÞ ¼ f sin
ps
L
; ð43Þ
with s the arc-length of the inextensible strut and the chord-lengths of the struts are equal to,
LI ¼ L� 1

2

Z L

0

ðw0ðsÞÞ2 � ðw0ðsÞÞ4

12

 !
ds ¼ Lþ�16L2f2p2 þ 16f4p4

64L3
;

LII ¼ LIII ¼ L:

ð44Þ
With the application of the load Tx only, see Fig. 1, the total potential energy function is expressed by,
V ¼ 8ðW 1 þ W 2 þ W 3Þ þ 2

Z L

0

EI
2

1

q2

� �
ds� T xsx; ð45Þ
where 1
q is the curvature of the elastic curve of the inextensible struts AA and A 0A 0 with jwj � 1 and w0 ¼ dw

ds
is the angle between the elastic curve and the axis of these struts.

Likewise, the non-linear curvature is approximated by,
1

q
� w00ðsÞ 1þ 1

2
w0ðsÞ2

� �
: ð46Þ
Consequently the potential energy function V depends on the variables sx, sy, sz, f.
Hence, the buckling of the struts AA and A 0A 0 problem is formulated by the equilibrium equations,
oV
osx

¼ oV
osy

¼ oV
osz

¼ 0 at f ¼ 0: ð47Þ
Eq. (47) are equivalent to the static equations of Coughlin and Stamenovic (1997),
T x ¼ 2F 1

sx � L
l1

þ 2F 2

sx
l2
; ð48Þ

F 1

sy
l1

¼ F 3

L� sy
l3

; ð49Þ

F 2
LI � sz

l2
¼ F 3

sz
l3
: ð50Þ
The critical condition for the buckling of the struts AA 0 has been reached when
o2V

of2
¼ 0: ð51Þ
Simple algebra reveals that the critical condition (51) is equivalent to that the critical condition has been
reached when the compressive load PA equals to the Euler buckling load for a simply supported beam. Thus
Eq. (51) yields the Euler critical PAc,
PAc ¼
p
L

� �2
EI ; ð52Þ
where PA is the compressive load on the strut AA 0 given by
PA ¼ F 1

LI

l1
þ F 2

LI � sz
l2

ð53Þ
see Coughlin and Stamenovic (1997). In addition the compressive loads on the struts BB 0 and CC 0 are given
by,
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PB ¼ F 3
LII

l3
þ F 1

LII � sx
l1

; ð54Þ

PC ¼ F 2

LIII

l2
þ F 3

LIII � sy
l3

: ð55Þ
It is assumed, evidently, that the compressive load PA is higher than the other compressive loads PB and
PC. This assumption needs further investigation.

Implementing the theory, we consider a six-strut tensegrity model with the parameters,
a ¼ 7; b ¼ �5:59; c ¼ 0; L ¼ 5:5; l0 ¼ 1; EI ¼ 1:085: ð56Þ

A critical placement with buckling of the struts may be located with the help of the Mathematica com-

puterized pack. Indeed, forming a function
H ¼ oV
osx

� �2

þ oV
osy

� �2

þ oV
osz

� �2

þ o2V

of2

� �2

ð57Þ
we are looking for a placement with minimum of the function H = 0. With the FindMinimum program of
the Mathematica, a critical equilibrium placement ðs0x ; s0y ; s0z ; f ¼ 0Þ may be located with min H = 0. In-
deed, a critical placement may be located with,
s0x ¼ 3:78; s0y ¼ 3:94; s0z ¼ 3:94; T 0
x ¼ 1: ð58Þ
Increasing the load so that T x ¼ T 0
xð1þ kÞ and 0 < k � 1, the equilibrium placement is defined by the

variables
sx ¼ s0x þ s1x ; sy ¼ s0y þ s1y ; sz ¼ s0z þ s1z : ð59Þ
The incremental variables s1x , s
1
y , s

1
z are defined by the equations,
o2W
os02x

s1x þ
o2W
os0xos0y

s1y þ
o2W
os0xos0z

s1z � 2T 0
xk ¼ 0;

o2W
os0yos0x

s1x þ
o2W
os02y

s1y þ
o2W
os0yos0z

s1z ¼ 0;

o2W
os0zos0x

s1x þ
o2W
os0zos0y

s1y þ
o2W
os02z

s1z ¼ 0;

ð60Þ
where all the quantities have been computed at the critical placement. Solving the system with the help of
Mathematica we get,
s1x ¼ �0:3946k; s1y ¼ �0:229k; s1z ¼ �0:223k: ð61Þ
Substituting sx, sy, sz from Eq. (59) into the potential function V, Eq. (45) the equilibrium equation
oV
of

¼ 0 ð62Þ
yields,
3:49f3 þ 0:8360fk ¼ 0: ð63Þ

Eq. (63) yields for k P 0 no non-zero real solutions. Therefore, motion is expected, since equilibrium

ceases to exist. Therefore, the critical Euler buckling load does not assure bifurcation, since dynamic re-
sponse may arise.
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8. Conclusion-further studies

Stability studies for a six-strut tensegrity model have been performed. Simple and compound bifurcation
states have been studied. The stability of the six-strut model with buckling of the one pair of the struts has
also been worked out. Critical conditions have been located and post-critical states have been described. It
is pointed out that stable bifurcation does not always exists when the struts buckle. Compound buckling
has also been discussed. The theory was implemented to various applications.

As it has been pointed out, the present study deals with stability studies adopting the (local) delay con-
vention for stability. Stability studies adopting Maxwell�s convention for stability will be also quite inter-
esting. Adopting the global (Maxwell�s) convention for stability, coexistence of phases phenomena may
show up along the cables. Cables with smart materials may exhibit that behaviour. Furthermore, experi-
mental studies may reveal the proper stability convention for tensegrity structures.
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