Available online at www.sciencedirect.com
INTERNATIONAL JOURNAL OF

sc.ENCE@D.nEm SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

4

ELSEVIER International Journal of Solids and Structures 42 (2005) 3459-3469

Stability of an elastic cytoskeletal tensegrity model

K.A. Lazopoulos *
Mechanics Laboratory, Faculty of Applied Sciences (SEMFE), National Technical University of Athens, 5 Heroes of
Polytechnion Avenue, Zografou campus, Athens, GR 157 73, Greece

Received 27 April 2004; received in revised form 7 October 2004
Available online 29 December 2004

Abstract

An elastic cytoskeletal tensegrity structure composed by six inextensible elastic struts and 24 elastic cables is consi-
dered. The model is studied, adopting delay convention for stability. Critical conditions for simple and compound insta-
bilities are defined. Post-critical behavior is also described. Equilibrium states with buckling of the struts are also
considered. It is revealed that critical Euler buckling load of the struts is a necessary but not a sufficient condition
for the existence of bifurcated equilibrium states, caused by buckling of the struts.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Following the pattern of Snelson’s sculptures in 1948, Buckminster Fuller (1961) adopted the concept of
tensegrity as a new method of designing geodesic structures. Those structures are made up by struts, pre-
serving the structural integrity by cables in tension. According to Connelly and Back (1998), the tension-
integrity, or tensegrity, structures can be mathematically modeled as a configuration of points, or vertices,
satisfying simple distance constraints. Ingber (1993, 1998), using tensegrity structures for modeling the cell
deformability, proposed a microstructural approach to cytoskeletal mechanics based on tensegrity. In fact
tensegrity structures are “strut-cable” structures with prescribed symmetries. There exists an extensive lit-
erature concerning the mechanics and also the advanced mathematics involved in these structures. A con-
cise description of the topic, trying to put together the mathematics and the mechanics of tensegrity as well,
has been given by Williams (2003) with up-dated references. Linear dynamic analysis results has been re-
ported by Motro (1992). Nonlinear dynamics and control studies have been published by Sultan et al.
(2001). In addition Coughlin and Stamenovic (1997) presented a study of a six strut tensegrity structure
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with buckling compression elements, applied to cell mechanics. Yet Stamenovic and Coughlin (1999) deal
with the role of prestress and the architecture of the cytoskeleton presenting also some specific values of
various elastic moduli. Since those structures are strong and light they have been quite important in the
construction of huge structures, like domes, high structures such as antennas and deployable structures
as well, used in space.

The simplest three dimensional tensegrity structure, classified as T-3 by Kenner (1976), has been stud-
ied by Oppenheim and Williams (1997, 2002, 2001). Following a bifurcation method, working with gen-
eralized coordinates, Lazopoulos (submitted for publication) studied the stability of the model. Further,
Coughlin and Stamenovic (1997) studied the stability of the six-strut model, for microstructural cytoskele-
tal studies, Ingber (1993, 1998). Nevertheless, the last stability studies are restricted to the buckling of
the struts.

In the present work, the stability of a six-strut tensegrity model is discussed with elastic inextensible
struts. Euler-strut buckling is also considered. In fact the stress—strain laws of the cables are non-linear
and non-unique equilibrium solutions show up. Critical states are defined and post-critical equilibrium
paths are described adopting delay convention for stability, Gilmore (1981, p. 143) . The local (delay)
convention for stability is invoked for buckling phenomena, whereas the global (Maxwell’s) convention
is mainly recalled for coexistence of phases phenomena such as elastoplastic ones, twinning of crystals,
smart materials etc, Ericksen (1991), Pitteri and Zanzotto (2003). Simple and compound bifurcation of
the equilibrium paths are revealed. Since the present bifurcation is a multivariable problem, standard
methods require elimination of passive coordinates and normalization of the potential energy function
(Thompson and Hunt, 1973; Troger and Steindl, 1991). Nevertheless, using a free coordinate bifurca-
tion procedure (Lazopoulos, 1994), simple and compound bifurcation problems may be studied and the
corresponding singularities may be classified. Some applications will be worked out just for implemen-
tation of the theory. Furthermore, critical states and post-critical equilibrium paths are considered
caused by Euler’s buckling of the struts. It is revealed that the critical Euler buckling load of the struts
is a necessary condition for the critical states, however it does not always yield stable post-critical
states.

2. Description of the six-strut tensegrity model

As it has been mentioned earlier, stability of the six-strut tensegrity model has been studied by
Coughlin and Stamenovic (1997). Euler-strut buckling has already been discussed. The model shown in
Fig. 1 consists of six inextensible struts and 24 cable segments. The cables and the struts are connected
through joints. The origin O of the coordinate system OXYZ is placed at the center of the model with
the axes in the direction of the pairs of the struts. All the struts have the same initial length L. Never-
theless, the struts may buckle and their chords may change and become L;, Ly, Ly correspondingly for
the struts (44 or A’A’), (BB or B'B’), (CC or C'C’). Furthermore, the initial (without external loading)
length of the cables is equal to /o = /3/8Ly. The value of the length / is required for the equilibrium
conditions of the structure without external loads. Forces of magnitude T,/2 are applied at the end points
of the struts 44 and A’A’, see Fig. 1, while forces of magnitude 7,/2 are applied at the ends of the struts
BB and B'B’. Yet forces of magnitude 7./2 are applied at the ends of the struts CC and C’C’. This causes
the change of the distances between the struts. In fact the distance between the A4 and A’A’ struts
changes from sy = %0 to s,. The same holds for the distance s, between the BB and B'B’ struts and s. be-
tween the CC and C'C’ struts. Furthermore, the cable segments change from /, to /; for the segments 4B,
A'B, AB’, A’B’, and from [, to L, for the segments AC, A'C, AC’', A'C’. Likewise the cable segments BC,
B'C, BC', B'C’ change from [, to /5. Hence the expressions for the current cable segments [y, l,, /3 are
given by, see Coughlin and Stamenovic (1997),
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Fig. 1. The geometry of the six-strut tensegrity model.

1
ll = E\/(L“ — Sx>2 +S% +L12,
1
12 :z\/(LI —SZ)2+S§+L%H7 (1)

1
13 = E \/(LHI — Sy)2 —|—S22 +L%I’

with the current chord lengths Ly, Ly, Lyyr. The analysis concerning buckling of the struts will be worked
out in the section following the stability study of the tensegrity model with inextensible struts.
Let us consider a non-linear strain energy function for the cables,

o li : ﬁ li 3 C li 4
Wi==(—-1 ——-1 —|—==1), 2
2<1n ) +6<ln ) +24<1n ) @
with i = 1,2,3 and /, the initial natural lengths of the cable. Then the total potential energy function with
rigid struts is given by
V:8(W1+W2+W3)—TXSX—TySy—TZSZ. (3)
Hence, the total potential energy function depends on the variables s, s, 5. and the loading parameters
T, T,, T.. Thus the equilibrium equations are given by

oV ov orv
AL ) 4
asx76sy’asz> “)

Vi=VV= (
It is rational to expect a solution from the equilibrium equations. If that solution is unique the equilib-

rium placement is stable, whereas in the case the solution is not unique the placement is unstable. With non-
unique solutions we mean multiple solutions (bifurcation case) or no solution at all (dynamic buckling).

3. Bifurcation analysis

Adopting delay convention for stability, Gilmore (1981, p. 143), the system remains in a stable or meta-
stable equilibrium place until that state disappears. Delay convention is used for studying mainly structural
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systems (Thompson and Hunt, 1973; Troger and Steindl, 1991). Nevertheless, Maxwell’s convention de-
mands for the system to follow the places of the global minima of the total potential, Gilmore (1981,
p-143). Maxwell’s convention for stability is used for studying material instabilities such as coexistence
of phases phenomena, twinning of crystals etc. (Ericksen, 1991; Pitteri and Zanzotto, 2003). The analysis
that follows conforms with the delay convention for stability.

Let us consider the generalized vector,

V= (5:,8,,5:) (5)
defining the placement of the system and the loading vector A of the loading parameters,

A=(T.T,,T.), (6)
then the total potential energy function ¥ may be expressed by

V=V(,A). (7)

If a position (v*,A°) is an equilibrium placement, the equilibrium path in the neighborhood,

v=v'+dv, A=A"+dA (8)
satisfies Taylor’s expansion of the equilibrium equation,

Vi(v,A) = V) + Vidv + Z—?dvz + Z—?dv3 + VdA + o(|dv]* + [dA]) = 0 (9)
with Vi, =VV, V,=VVV,V;=VVVVand V = g—/’( and the upper-script indicating evaluation at the place-

ment (v, A%). The symbol 0(|dv|3 + |dA]) means truncation of the higher order terms than the ones included
in the parenthesis. Since the terms included in Eq. (9) should be of the same order of magnitude, the higher
order terms are important in specific cases. Recalling that (v, A%) is an equilibrium placement, V¢ = 0 and
Eq. (9) yields,

Vidv + V| dA = 0. (10)
Hence, if
r 62 V() 62 VO 62 VO T
0s?  0Os.0s, 0s.0s;
vt vt
V= : ay
05,05, asy 0s,,0s
Ou AN o A
| 0s.0s, 0s.0s, 0s? |

is not a singular matrix, the equilibrium Eq. (10) accepts a unique solution,
dv = — (V) 'V,dA. (12)
In the case V) is a singular matrix yielding,
detVy=0 (13)

the critical conditions A° = (79, Tg, 7?) have been reached, corresponding to the critical placement. In that
case a single vector direction dt for the simple bifurcation case, or two vector directions dt for the com-

pound bifurcation case, satisfies the equation,

Vidt = 0. (14)
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4. Simple bifurcation case

The incremental vector is defined, in this case, by

dv = (dt, (15)
where ( is a parameter. Hence, the equilibrium Eq. (10) yields,
2V, dAdt
P=-"-= (16)
V;(dt)

if V5(dt)® # 0. This case corresponds to fold catastrophe. In case (*> 0 two equilibrium placements are
possible. In case {><0 no equilibrium placement is possible and motion is expected. In the case
V;(dt)* = 0 the equilibrium Eq. (12) yields,

6LV, dt'dA
V,dt' + 3V;dt’b
corresponding to the cusp singularity with b a vector defined by the relation,
Vs(dt)> + V,b = 0,
see Lazopoulos and Markatis (1995).

¢ = (17)

5. Compound bifurcation of the six-strut tensegrity model

In the present case, the singular matrix V9 includes entries of the same value equal to . Therefore, the
kernel a, of the singular matrix Vg satisfying the equation,

Via, =0 (18)
with the kernel a, may be described by

1 0
a=[¢ ¢]=|-1 11 (19)
0 -1
Standard bifurcation methods require elimination of passive coordinates and normalization of the total
potential energy function. However, Lazopoulos (1994) and Lazopoulos and Markatis (1995) have pre-
sented a free coordinate branching approach with classification of the various singularities. Following that
procedure, the tangent to the bifurcating equilibrium branch is described by a vector a; in R*> with
a; = [51 52], and
ds,
ds, | = (aar ={[d10; 0r,]. (20)
ds,

Further, the vector a;¢R” is defined by the existence of a vector y = [y, 7,] satisfying the equations,

Vg(azal)z(ﬂzl’) =0,

21
V) () (a:7)dA = 0. ey
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Eliminating ybetween the Eq. (21) a vector a; is defined, describing the tangent vectors to the equilibrium
paths. Three different solutions (vectors a;) of the system (21) classify the singularity as elliptic umbilic,
whereas the unique solution classifies the singularity as hyperbolic and the two different vectors a; classify
the singularity as parabolic umbilic. Yet the parameter { may be found by the equilibrium Eq. (16), see
Lazopoulos and Markatis (1995).

6. Applications

Two applications will be studied in the present section. The first application deals with the simple
branching of the equilibrium of the six-strut tensegrity model with forces acting along one direction.
The second application deals with the compound branching.

6.1. Simple bifurcation application

Let us consider the cytoskeletal tensegrity model with the strut length Lo = 4.97. The applied force is
directed only along the x-axis. Furthermore, the strain energy function is defined by,

1/1, 2556 /1, 3412/ 4
W=~ (1) 22 (2 ey (LR I I 22
2(1n ) 6 <1n ) T <zn ) (22)

Therefore, equilibrium Eq. (4) yields,
6W1 6W2 6W3 Tx _
Os, + 0s, + Os, _§_0’

ow, +6W2+6W3 _0

0s, 0s, Os, ’ (23)
ow, oW, oWs
0Os, + 0Os, + 0s. =0

The system of equilibrium equations consists of two equations due to the symmetry in the y and z direc-
tions. Likewise, the critical condition is defined by,

det V) = 0. (24)

A critical placement (s,,s,,s.) satisfying both Egs. (23) and (24) may be found using the Mathematica
computerized algebra pack. Indeed, if

H<aW1 oW, 6W3>2+<6W1 oW, oW,

2
det Vg)* 25
0s,, * 0s,, * 0s,, 0s. - 0s. * 6s2> + (det V) (25)

a solution to the system (23) and (24) may be located looking for the minimum of the function H to be
equal to zero. Indeed, with the natural (initial) length [, =2.72 a critical state may be located with
sy =15.0, 5, =5.76, 5. = 5.79. That critical placement is reached with 7, = 0.0687. The Hessian matrix at
the critical placement, see Eq. (11), has been computed and found equal to,

—0.060 —0.0006 —0.012
V)= {-0.0006 —0.141 —0.012 . (26)
-0.012  -0.012 —0.133
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The vector dt = [df, dr, dt3]" satisfying Eq. (14), i.e. Vidt = 0, may be given by,
dt=[1 042 —-493]". (27)

Proceeding to the prescription of the post-critical equilibrium path, Eq. (16) defines the parameter (.
Indeed,

0 v o'V v o'V v v o'V
A" (dt) 3 3 altl +36 ra dtldt2+3a 357 dtldt3+ 3 3 dt2+3a 557 dtzdt3 +3a 552 dtzdt3 +— o dt3
a3V a“V a’ v
——dfs + 3 ———dtdt] + 3 ——— dtsdts + 3 ————dtdtdt
T B g P T e R T P geasas, 1
=13.23
V,dtdA = —dT,
Hence, according to Eq. (16),
2= - M—MSMT (28)
V;(dt)®
Consequently, for d7', > 0 the equilibrium placements are,
Sy 5.0+¢
s, | = |5.76+(0.42
S, 5.79 — (4.93

6.2. Compound branching application

Let us consider, in the present case, the six-strut tensegrity model with the strut length of the perfect sys-
tem Lo = 5. However initial imperfections may be present at the lengths of the struts and L;= Ly + e,
L= Lo+ 2e, Ly = Lo + 3e. Let us point out that the solution to the problem requires existence of some
imperfections. Those imperfections may also be introduced by the elastic coefficients of the strain energy
function. The applied force system is directed only along the three axes with equal magnitude. In this case
the s, = s, = s.. Furthermore, the strain energy function is defined by,

1/l o2/ ’

Therefore, equilibrium Eq. (4) yields,
ow, ow, ows T, .
as,- + aSi + @S,— 8 ’ ! Hhz (30)
Further, the Hessian VY is singular with equal entries iff,
oWy W, Wy Fw, W, | OW;
- - = + + :
0s? 0s? 0s?  0s,0s, 0s,0s, 0s,0s,

(31)

A critical placement of compound bifurcation is defined by a solution of the system (30) and (31) if the
natural (initial) length of the cables is /, = 2.5. Indeed, the system (30) and (31) yields,

Sy =8, =5, = 6.616. (32)
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For a tensegrity system with the parameters,

a=1, p=-2, ¢=0, Ly=5 1,=2 (33)
the perfect system (e = 0) yields
Xo =y, =20 = 6.616, T°= Tf, =T%=0.334. (34)
Eq. (21a) yields for y = (y, 7,), 7 =71/y2, 6 = 61/0,
—0.0756* + 0.07165y — 0.0517> = 0, (35)

whereas, Eq. (21b) yields, assuming A = (T, T,, T.,e)
(—0.7334 + 0.3620 + 0.36y — 0.74y0)e = 0. (36)
The common real solution of the system (35), (36) is,
0=1.02, y=-092 (37)

and the singularity is hyperbolic umbilic.
Therefore, the post-critical path is described by the field,

Sy 6.616 + ¢
sy | = 6.616 |. (38)
S 6.616 — ¢
The post-critical, loading in addition, may be given by,
T,=0334+17, 7,=0334+1, T.=0334+71;. (39)
The total potential V' = V(&,e,1y,7,,73) may be computed. Then the equilibrium equation is defined by
ov
— =0 40
52 (40)
yielding,
_ =T
<= 0.15 (41)

Therefore, Egs. (38) and (41) yield the post-critical equilibrium path.

7. The strut buckling
In this case, the axial compressive load on the struts 44 or A’A’ has reached the Euler critical value,

™ 2
Py = (f) El, (42)
L

with EI the bending stiffness of the struts A4 or A’A’ and L, the initial length of the struts. It is also as-
sumed that the compressive loads Pg, Pc of the struts BB or B'B’ and CC or C'C’ respectively are less than
the corresponding Euler critical loads. This is not a restriction, since the compressive loads are different.
The compressive loads in Coughlin and Stamenovic (1997) are equal because no external loading is applied
and the initial equilibrium placement is critical. Here the critical placement shows up after the application
of the load T. Due to the buckling of the A4 or A’A’ struts, the deflection of the strut is defined by,
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w(s) = Csin%, (43)

with s the arc-length of the inextensible strut and the chord-lengths of the struts are equal to,

1Ef 5 (W(s)! —16L7n* + 16(*n*
LI—L—E/O ((W(S)) —T dS—L+ 64L3 s

(44)
LII = LIII =L
With the application of the load T, only, see Fig. 1, the total potential energy function is expressed by,

L (EL 1
V:8(W1+W2+W3)+2/ 7; dS—TXSX, (45)
0
where i is the curvature of the elastic curve of the inextensible struts A4 and 4’4’ with |w| < 1 and w' = %
is the angle between the elastic curve and the axis of these struts.
Likewise, the non-linear curvature is approximated by,

% ~ W' (s) (1 + %W'(sf) . (46)

Consequently the potential energy function V' depends on the variables sy, s,, s-, (.

Hence, the buckling of the struts A4 and 4’A’ problem is formulated by the equilibrium equations,
oV orv or
—=—=_—= t{=0. 47
Osy Os, Os. at (47)

Eq. (47) are equivalent to the static equations of Coughlin and Stamenovic (1997),

s, — L Sy

T.=2F; +2F,—, (48)
I I
L —
2=y~ (49)
h l3
L 9z z
P (50)
[ I3
The critical condition for the buckling of the struts 44’ has been reached when
v
— =0. (51)
oC

Simple algebra reveals that the critical condition (51) is equivalent to that the critical condition has been
reached when the compressive load P, equals to the Euler buckling load for a simply supported beam. Thus
Eq. (51) yields the Euler critical P 4.,

7'[ 2
Py = (Z) El (52)
where P, is the compressive load on the strut 44’ given by
L L —s,
Py=F 24+ F,~2 (53)
I B

see Coughlin and Stamenovic (1997). In addition the compressive loads on the struts BB’ and CC’ are given
by,
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L Ly — s,

Py=F,- 2 , (54)
I3 L
L Ly — sy

Pe = F, =M p,mm Sy (55)
I I

It is assumed, evidently, that the compressive load P 4 is higher than the other compressive loads Py and
Pc. This assumption needs further investigation.
Implementing the theory, we consider a six-strut tensegrity model with the parameters,

x=7, B=-559, c¢c=0, L=55 I,=1, EI=1085. (56)

A critical placement with buckling of the struts may be located with the help of the Mathematica com-
puterized pack. Indeed, forming a function

o\2  [ov\2  [ov\: [V
H=(g) + (as) (a) <a¢2> 7

we are looking for a placement with minimum of the function A = 0. With the FindMinimum program of
the Mathematica, a critical equilibrium placement (s?, 59, 57, { = 0) may be located with min H = 0. In-
deed, a critical placement may be located with,

sy =378, s)=394 =394, T =1 (58)

Increasing the load so that T, = T°(1 + ) and 0 < 1 < 1, the equilibrium placement is defined by the
variables

0, 0, 0,
Se =S, t8,, S,=8,+S, S:=S5 +s5. (59)
The incremental variables s!, s;, s! are defined by the equations,

ow ,  ow , oW

279 =
0s0? Sx asfr)@sg{ Sy 0s00s9 % x 0,
o'w . ow , oW |
05000 a5 T aghast ™ T (60)
*w *w *w
1 1 sl _ 07

s s
070 X 070"y 02 °z
0s00sY 0s%0s ) 0s?

where all the quantities have been computed at the critical placement. Solving the system with the help of
Mathematica we get,

st =-0.39464, s\ =-0.2291, s!=-0.223/ (61)

y z

Substituting s,, s,, s. from Eq. (59) into the potential function V, Eq. (45) the equilibrium equation

o

oC
yields,

3.498% +0.83600/ = 0. (63)

Eq. (63) yields for 2 > 0 no non-zero real solutions. Therefore, motion is expected, since equilibrium

ceases to exist. Therefore, the critical Euler buckling load does not assure bifurcation, since dynamic re-
sponse may arise.

-0 (62)
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8. Conclusion-further studies

Stability studies for a six-strut tensegrity model have been performed. Simple and compound bifurcation
states have been studied. The stability of the six-strut model with buckling of the one pair of the struts has
also been worked out. Critical conditions have been located and post-critical states have been described. It
is pointed out that stable bifurcation does not always exists when the struts buckle. Compound buckling
has also been discussed. The theory was implemented to various applications.

As it has been pointed out, the present study deals with stability studies adopting the (local) delay con-
vention for stability. Stability studies adopting Maxwell’s convention for stability will be also quite inter-
esting. Adopting the global (Maxwell’s) convention for stability, coexistence of phases phenomena may
show up along the cables. Cables with smart materials may exhibit that behaviour. Furthermore, experi-
mental studies may reveal the proper stability convention for tensegrity structures.
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